If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+30x+60=0
a = 2; b = 30; c = +60;
Δ = b2-4ac
Δ = 302-4·2·60
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{105}}{2*2}=\frac{-30-2\sqrt{105}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{105}}{2*2}=\frac{-30+2\sqrt{105}}{4} $
| -2n-6n=8 | | -2-6n=8 | | x+12+2x+11=11 | | 3x=323 | | 3a+12-(6a)=-9 | | -5n=-2n-3n | | 11+30+2x=x+30 | | 7x+5=-5x+65 | | X=111/3x-9=14x-7-13x | | 11r+15=-2^2 | | 9x-4=7x+26 | | -14.1=-3(y-9.8) | | 6-2b=5b-1 | | 50.2=2*3.14t | | 6(x^-1)=x-1 | | 4(1-p)=14p+4 | | 3n-5=9+1/2n | | 7+5n=18 | | X^2+-2x-45=0 | | 2(t-3)-72=0 | | 5-15m=65 | | 6(-8x+2)=4-8(-x-1) | | 1=0.3x-0.7-3 | | 6q-6q=0 | | 5x4=15x−3 | | –3f+9=–6f | | 3b+b-(8)=4 | | -3(x-1)=2(3x-4) | | 2x-10=x+8=110 | | x+3x+11=110 | | -4-b=4+b | | 4=3+6v |